extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C2×SD16) = C2×D8.C4 | φ: C2×SD16/C2×C8 → C2 ⊆ Aut C22 | 64 | | C2^2.1(C2xSD16) | 128,874 |
C22.2(C2×SD16) = C23.20SD16 | φ: C2×SD16/C2×C8 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.2(C2xSD16) | 128,875 |
C22.3(C2×SD16) = C42.365D4 | φ: C2×SD16/C2×C8 → C2 ⊆ Aut C22 | 64 | | C2^2.3(C2xSD16) | 128,1899 |
C22.4(C2×SD16) = C42.294D4 | φ: C2×SD16/C2×C8 → C2 ⊆ Aut C22 | 64 | | C2^2.4(C2xSD16) | 128,1978 |
C22.5(C2×SD16) = D4⋊7SD16 | φ: C2×SD16/SD16 → C2 ⊆ Aut C22 | 32 | | C2^2.5(C2xSD16) | 128,2027 |
C22.6(C2×SD16) = D4⋊8SD16 | φ: C2×SD16/SD16 → C2 ⊆ Aut C22 | 64 | | C2^2.6(C2xSD16) | 128,2030 |
C22.7(C2×SD16) = D4⋊9SD16 | φ: C2×SD16/SD16 → C2 ⊆ Aut C22 | 64 | | C2^2.7(C2xSD16) | 128,2067 |
C22.8(C2×SD16) = C2×C23.31D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.8(C2xSD16) | 128,231 |
C22.9(C2×SD16) = C42.404D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.9(C2xSD16) | 128,235 |
C22.10(C2×SD16) = C42.62D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.10(C2xSD16) | 128,250 |
C22.11(C2×SD16) = C24.61D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.11(C2xSD16) | 128,252 |
C22.12(C2×SD16) = C23⋊SD16 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.12(C2xSD16) | 128,328 |
C22.13(C2×SD16) = (C2×C4)⋊SD16 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.13(C2xSD16) | 128,331 |
C22.14(C2×SD16) = C24.14D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.14(C2xSD16) | 128,340 |
C22.15(C2×SD16) = (C2×C4).SD16 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.15(C2xSD16) | 128,343 |
C22.16(C2×SD16) = C2×M5(2)⋊C2 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.16(C2xSD16) | 128,878 |
C22.17(C2×SD16) = C2×C8.17D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 64 | | C2^2.17(C2xSD16) | 128,879 |
C22.18(C2×SD16) = C23.21SD16 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.18(C2xSD16) | 128,880 |
C22.19(C2×SD16) = C2×C8.Q8 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.19(C2xSD16) | 128,886 |
C22.20(C2×SD16) = M5(2)⋊3C4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.20(C2xSD16) | 128,887 |
C22.21(C2×SD16) = M5(2).C22 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.21(C2xSD16) | 128,970 |
C22.22(C2×SD16) = C23.10SD16 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.22(C2xSD16) | 128,971 |
C22.23(C2×SD16) = C2×C23.47D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 64 | | C2^2.23(C2xSD16) | 128,1818 |
C22.24(C2×SD16) = C42.222D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.24(C2xSD16) | 128,1833 |
C22.25(C2×SD16) = C42.266D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.25(C2xSD16) | 128,1940 |
C22.26(C2×SD16) = C42.281D4 | φ: C2×SD16/C2×D4 → C2 ⊆ Aut C22 | 64 | | C2^2.26(C2xSD16) | 128,1961 |
C22.27(C2×SD16) = C2×C22.SD16 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.27(C2xSD16) | 128,230 |
C22.28(C2×SD16) = C42.403D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.28(C2xSD16) | 128,234 |
C22.29(C2×SD16) = C42.61D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.29(C2xSD16) | 128,249 |
C22.30(C2×SD16) = C24.60D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.30(C2xSD16) | 128,251 |
C22.31(C2×SD16) = C23⋊2SD16 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.31(C2xSD16) | 128,333 |
C22.32(C2×SD16) = Q8⋊D4⋊C2 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.32(C2xSD16) | 128,336 |
C22.33(C2×SD16) = C24.16D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.33(C2xSD16) | 128,345 |
C22.34(C2×SD16) = C4⋊C4.19D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.34(C2xSD16) | 128,348 |
C22.35(C2×SD16) = C2×C23.46D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.35(C2xSD16) | 128,1821 |
C22.36(C2×SD16) = C42.223D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.36(C2xSD16) | 128,1835 |
C22.37(C2×SD16) = C23⋊4SD16 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.37(C2xSD16) | 128,1919 |
C22.38(C2×SD16) = C42.264D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.38(C2xSD16) | 128,1938 |
C22.39(C2×SD16) = C42.279D4 | φ: C2×SD16/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.39(C2xSD16) | 128,1959 |
C22.40(C2×SD16) = C2×C22.4Q16 | central extension (φ=1) | 128 | | C2^2.40(C2xSD16) | 128,466 |
C22.41(C2×SD16) = C4×D4⋊C4 | central extension (φ=1) | 64 | | C2^2.41(C2xSD16) | 128,492 |
C22.42(C2×SD16) = C4×Q8⋊C4 | central extension (φ=1) | 128 | | C2^2.42(C2xSD16) | 128,493 |
C22.43(C2×SD16) = C4×C4.Q8 | central extension (φ=1) | 128 | | C2^2.43(C2xSD16) | 128,506 |
C22.44(C2×SD16) = C23.35D8 | central extension (φ=1) | 32 | | C2^2.44(C2xSD16) | 128,518 |
C22.45(C2×SD16) = C24.155D4 | central extension (φ=1) | 64 | | C2^2.45(C2xSD16) | 128,519 |
C22.46(C2×SD16) = C42.98D4 | central extension (φ=1) | 64 | | C2^2.46(C2xSD16) | 128,534 |
C22.47(C2×SD16) = C42.99D4 | central extension (φ=1) | 128 | | C2^2.47(C2xSD16) | 128,535 |
C22.48(C2×SD16) = C24.133D4 | central extension (φ=1) | 64 | | C2^2.48(C2xSD16) | 128,539 |
C22.49(C2×SD16) = C23.36D8 | central extension (φ=1) | 64 | | C2^2.49(C2xSD16) | 128,555 |
C22.50(C2×SD16) = C24.157D4 | central extension (φ=1) | 64 | | C2^2.50(C2xSD16) | 128,556 |
C22.51(C2×SD16) = C42.55Q8 | central extension (φ=1) | 128 | | C2^2.51(C2xSD16) | 128,566 |
C22.52(C2×SD16) = C42.58Q8 | central extension (φ=1) | 128 | | C2^2.52(C2xSD16) | 128,576 |
C22.53(C2×SD16) = C24.159D4 | central extension (φ=1) | 64 | | C2^2.53(C2xSD16) | 128,585 |
C22.54(C2×SD16) = D4⋊(C4⋊C4) | central extension (φ=1) | 64 | | C2^2.54(C2xSD16) | 128,596 |
C22.55(C2×SD16) = Q8⋊C4⋊C4 | central extension (φ=1) | 128 | | C2^2.55(C2xSD16) | 128,597 |
C22.56(C2×SD16) = C24.160D4 | central extension (φ=1) | 64 | | C2^2.56(C2xSD16) | 128,604 |
C22.57(C2×SD16) = C23.38D8 | central extension (φ=1) | 64 | | C2^2.57(C2xSD16) | 128,606 |
C22.58(C2×SD16) = (C2×SD16)⋊14C4 | central extension (φ=1) | 64 | | C2^2.58(C2xSD16) | 128,609 |
C22.59(C2×SD16) = (C2×SD16)⋊15C4 | central extension (φ=1) | 64 | | C2^2.59(C2xSD16) | 128,612 |
C22.60(C2×SD16) = C24.135D4 | central extension (φ=1) | 64 | | C2^2.60(C2xSD16) | 128,624 |
C22.61(C2×SD16) = C23.23D8 | central extension (φ=1) | 64 | | C2^2.61(C2xSD16) | 128,625 |
C22.62(C2×SD16) = C4.Q8⋊9C4 | central extension (φ=1) | 128 | | C2^2.62(C2xSD16) | 128,651 |
C22.63(C2×SD16) = C4.Q8⋊10C4 | central extension (φ=1) | 128 | | C2^2.63(C2xSD16) | 128,652 |
C22.64(C2×SD16) = C4.67(C4×D4) | central extension (φ=1) | 64 | | C2^2.64(C2xSD16) | 128,658 |
C22.65(C2×SD16) = C4.68(C4×D4) | central extension (φ=1) | 128 | | C2^2.65(C2xSD16) | 128,659 |
C22.66(C2×SD16) = C2.(C8⋊8D4) | central extension (φ=1) | 128 | | C2^2.66(C2xSD16) | 128,665 |
C22.67(C2×SD16) = C2.(C8⋊7D4) | central extension (φ=1) | 64 | | C2^2.67(C2xSD16) | 128,666 |
C22.68(C2×SD16) = C8⋊7(C4⋊C4) | central extension (φ=1) | 128 | | C2^2.68(C2xSD16) | 128,673 |
C22.69(C2×SD16) = C42.30Q8 | central extension (φ=1) | 128 | | C2^2.69(C2xSD16) | 128,680 |
C22.70(C2×SD16) = C42.431D4 | central extension (φ=1) | 128 | | C2^2.70(C2xSD16) | 128,688 |
C22.71(C2×SD16) = C42.432D4 | central extension (φ=1) | 64 | | C2^2.71(C2xSD16) | 128,689 |
C22.72(C2×SD16) = (C2×C4)⋊9SD16 | central extension (φ=1) | 64 | | C2^2.72(C2xSD16) | 128,700 |
C22.73(C2×SD16) = C42.117D4 | central extension (φ=1) | 128 | | C2^2.73(C2xSD16) | 128,713 |
C22.74(C2×SD16) = C42.118D4 | central extension (φ=1) | 64 | | C2^2.74(C2xSD16) | 128,714 |
C22.75(C2×SD16) = C42.121D4 | central extension (φ=1) | 128 | | C2^2.75(C2xSD16) | 128,719 |
C22.76(C2×SD16) = C42.122D4 | central extension (φ=1) | 128 | | C2^2.76(C2xSD16) | 128,720 |
C22.77(C2×SD16) = C42.436D4 | central extension (φ=1) | 128 | | C2^2.77(C2xSD16) | 128,722 |
C22.78(C2×SD16) = C22×D4⋊C4 | central extension (φ=1) | 64 | | C2^2.78(C2xSD16) | 128,1622 |
C22.79(C2×SD16) = C22×Q8⋊C4 | central extension (φ=1) | 128 | | C2^2.79(C2xSD16) | 128,1623 |
C22.80(C2×SD16) = C22×C4.Q8 | central extension (φ=1) | 128 | | C2^2.80(C2xSD16) | 128,1639 |
C22.81(C2×SD16) = C2×C4×SD16 | central extension (φ=1) | 64 | | C2^2.81(C2xSD16) | 128,1669 |
C22.82(C2×SD16) = C2×D4.D4 | central extension (φ=1) | 64 | | C2^2.82(C2xSD16) | 128,1762 |
C22.83(C2×SD16) = C2×C4⋊SD16 | central extension (φ=1) | 64 | | C2^2.83(C2xSD16) | 128,1764 |
C22.84(C2×SD16) = C2×D4⋊2Q8 | central extension (φ=1) | 64 | | C2^2.84(C2xSD16) | 128,1803 |
C22.85(C2×SD16) = C2×Q8⋊Q8 | central extension (φ=1) | 128 | | C2^2.85(C2xSD16) | 128,1805 |
C22.86(C2×SD16) = C2×C4.4D8 | central extension (φ=1) | 64 | | C2^2.86(C2xSD16) | 128,1860 |
C22.87(C2×SD16) = C2×C4.SD16 | central extension (φ=1) | 128 | | C2^2.87(C2xSD16) | 128,1861 |
C22.88(C2×SD16) = C2×C8⋊5D4 | central extension (φ=1) | 64 | | C2^2.88(C2xSD16) | 128,1875 |
C22.89(C2×SD16) = C2×C8⋊3Q8 | central extension (φ=1) | 128 | | C2^2.89(C2xSD16) | 128,1889 |
C22.90(C2×SD16) = C23⋊3SD16 | central stem extension (φ=1) | 64 | | C2^2.90(C2xSD16) | 128,732 |
C22.91(C2×SD16) = (C2×C4)⋊3SD16 | central stem extension (φ=1) | 64 | | C2^2.91(C2xSD16) | 128,745 |
C22.92(C2×SD16) = (C2×C8)⋊20D4 | central stem extension (φ=1) | 64 | | C2^2.92(C2xSD16) | 128,746 |
C22.93(C2×SD16) = (C2×D4)⋊Q8 | central stem extension (φ=1) | 64 | | C2^2.93(C2xSD16) | 128,755 |
C22.94(C2×SD16) = (C2×Q8)⋊Q8 | central stem extension (φ=1) | 128 | | C2^2.94(C2xSD16) | 128,756 |
C22.95(C2×SD16) = C24.84D4 | central stem extension (φ=1) | 64 | | C2^2.95(C2xSD16) | 128,766 |
C22.96(C2×SD16) = C24.85D4 | central stem extension (φ=1) | 64 | | C2^2.96(C2xSD16) | 128,767 |
C22.97(C2×SD16) = C4⋊C4⋊7D4 | central stem extension (φ=1) | 64 | | C2^2.97(C2xSD16) | 128,773 |
C22.98(C2×SD16) = C4⋊C4.95D4 | central stem extension (φ=1) | 128 | | C2^2.98(C2xSD16) | 128,775 |
C22.99(C2×SD16) = (C2×C4)⋊5SD16 | central stem extension (φ=1) | 64 | | C2^2.99(C2xSD16) | 128,787 |
C22.100(C2×SD16) = (C2×C8)⋊Q8 | central stem extension (φ=1) | 128 | | C2^2.100(C2xSD16) | 128,790 |
C22.101(C2×SD16) = C4⋊C4.106D4 | central stem extension (φ=1) | 64 | | C2^2.101(C2xSD16) | 128,797 |
C22.102(C2×SD16) = (C2×Q8).8Q8 | central stem extension (φ=1) | 128 | | C2^2.102(C2xSD16) | 128,798 |
C22.103(C2×SD16) = (C2×C4).24D8 | central stem extension (φ=1) | 64 | | C2^2.103(C2xSD16) | 128,803 |
C22.104(C2×SD16) = (C2×C4).19Q16 | central stem extension (φ=1) | 128 | | C2^2.104(C2xSD16) | 128,804 |
C22.105(C2×SD16) = C24.89D4 | central stem extension (φ=1) | 64 | | C2^2.105(C2xSD16) | 128,809 |
C22.106(C2×SD16) = C2.(C8⋊3Q8) | central stem extension (φ=1) | 128 | | C2^2.106(C2xSD16) | 128,816 |
C22.107(C2×SD16) = C4.(C4⋊Q8) | central stem extension (φ=1) | 128 | | C2^2.107(C2xSD16) | 128,820 |
C22.108(C2×SD16) = (C2×C8).169D4 | central stem extension (φ=1) | 64 | | C2^2.108(C2xSD16) | 128,826 |
C22.109(C2×SD16) = (C2×C8).170D4 | central stem extension (φ=1) | 128 | | C2^2.109(C2xSD16) | 128,828 |
C22.110(C2×SD16) = (C2×C4).28D8 | central stem extension (φ=1) | 128 | | C2^2.110(C2xSD16) | 128,831 |
C22.111(C2×SD16) = (C2×C4).23Q16 | central stem extension (φ=1) | 128 | | C2^2.111(C2xSD16) | 128,832 |